Biologically Inspired Self-Stabilizing Control for Bipedal Robots

نویسندگان

  • Woosung Yang
  • Hyungjoo Kim
  • Bum Jae You
چکیده

Despite recent major advances in computational power and control algorithms, the stable and robust control of a bipedal robot is still a challenging issue due to the complexity and high nonlinearity of robot dynamics. To address the issue an efficient and powerful alternative based on a biologically inspired control framework employing neural oscillators is proposed and tested. In a numerical test the virtual force controller combined with the neural oscillator of a humanoid robot generated rhythmic control signals and stable bipedal locomotion when coupled with proper impedance components. The entrainment nature inherent to neural oscillators also achieved stable and robust walking even in the presence of unexpected disturbances, in that the centre of mass (COM) was successfully kept in phase with the zero moment point (ZMP) input trajectory. The efficiency of the proposed control scheme is discussed alongside simulation results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-stabilizing Human-Like Motion Control Framework for Humanoids Using Neural Oscillators

We propose an efficient and powerful alternative for adaptation of human motions to humanoid robots keeping the bipedal stability. For achieving a stable and robust whole body motion of humanoid robots, we design a biologically inspired control framework based on neural oscillators. Entrainments of neural oscillators play a key role to adapt the nervous system to the natural frequency of the in...

متن کامل

SelSta - A Biologically Inspired Approach for Self-Stabilizing Humanoid Robot Walking

In this paper we elaborate a study on self-stabilizing humanoid robot that achieves run-time self-stabilization and energy optimized walking gait pattern parameters on different kinds of flat surfaces. The algorithmic approach named SelSta uses biologically inspired notions that introduce robustness into the self-stabilizing functionality of the humanoid robot. The approach has been practically...

متن کامل

Biologically Inspired Locomotion Strategies: Novel Ground Mobile Robots at RoMeLa

This paper presents some of the ground mobile robots under development at the Robotics and Mechanisms Laboratory (RoMeLa) at Virginia Tech that use biologically inspired novel locomotion strategies. By studying nature's models and then imitating or taking inspiration from these designs and processes, we apply and implement new ways for mobile robots to move. Unlike most ground mobile robots tha...

متن کامل

A Brief Review of Bipedal Robotics Research

During the last few years, the number of research and development projects aimed at building bipedal and humanoid robots has been increasing at a rapid rate. In this paper, we provide a brief review of current activities in the field of bipedal and humanoid robotics. We describe both commercial humanoid projects and projects from academia. The main motivations for using bipedal robots are intro...

متن کامل

Bio-Inspired Feedback Control of 3D Humanlike Bipedal Robots

Bridging contemporary techniques in bio-inspired control affords a unique perspective into human locomotion where the interplay between sagittal and coronal dynamics is understood and exploited to simplify control design. Functional Routhian reduction is particularly useful on bipeds as it decouples these dynamics, allowing for control design on a sagittallyrestricted model while providing coro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013